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1. INTRODUCTION

Let I = [a, b] be a compact interval, C(I) be the set of continuous, real­
valued functions defined on I, and p > O. Suppose f(x) = g(x) B(x) where
g, BE C(I), g(x) > 0 on I, and B has finitely many zeros Xl' X 2 , ..• , X s in I.
Let R+(n, m) denote the set of all rational functions R === P/Q where P is a
polynomial of degree 11 or less, Q is a polynomial of degree m or less,
P(x) ~ 0 on I, and Q(x) > 0 on I. We shall consider the problem of
approximating/by elements of the set

V(p, 11, m) = {RPB: R E R+(n, m)}.

In particular, an element (R*)P B of V(p, 11, m) is called a best approximation
to I from V(p, 11, m) if

III - (R*)P B II inf III - RPB II
RER+(n.",)

(1.1)

where II . II is the uniform norm over 1.
The problem of Chebyshev approximation by interpolating rationals (1.1)

(so called because of the inclusion of the factor B) was first considered by
J. Williams [5] in the case n = O. That is, his approximants involved recip­
rocals of polynomials. The question of existence of best approximations
proved to be a difficulty in Williams' paper. A later paper by G. D. Taylor
and J. Williams [4] gave examples for which best approximations do not
exist and established conditions on B and on g which insure the existence
of best approximations. The purpose of this paper is to extend Taylor and
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Williams' Theorem 3.1 (conditions on B) to the more general setting of
approximation from V(p, n, 111) with 11 ~ O. We do this by using quite
different methods. In addition, we show that the conditions of this theorem
are essential when 11 ~ 2 and 111 ~ 2.

As C. B. Dunham [3] notes, the approximation problem (Ll) can be
regarded as a restricted range approximation problem of g by rational
functions with respect to a vanishing weight function IB I. Dunham [2, 3]
has given characterization and uniqueness theorems for similar problems.
In Section 3, we state appropriate characterization and uniqueness results
for the problem (1.1).

2. EXISTENCE OF BEST ApPROXI]I,IATIONS

In this section, we place conditions on B which insure the existence of
best approximations to f from yep, n, m). Essentially the conditions are
that the interior zeros of B are of multiplicity less than 2p and the endpoint
zeros of B are of multiplicity less than p. This will be foliowed by showing
that these conditions are essential when n ~ 2 and 111 ~ 2 in the sense that
if B fails to satisfy these conditions, then there is a g EO C(l) with g(x) > 0
on I such thatf = gB does not have a best approximation from yep, 11, m).

THEOREM 1. Suppose that for v = 1,... , s,

(i) lim"_'"j'± I B(x)i/l x - XV IP = OCJ if Xv = a or b, (ind

(ii) lim",~",,, I B(x)1/1 x - XV 1
2P = OCJ if Xv EO (a, b).

Thenfhas a best approximation from yep, n, m).

Proof Let

d = inf Ilf- RPB11
RER+(n.m)

and select a sequence {RIJr~l in R+(n, m) such that Ilf - KlB 11 ~ d + I

for all k and lif - RkPB 11-+ d as k -+ 00. We may write Rio = P/:i'Qk where
PI: E 17" , QI, E 17m , Pk(x) ~ 0 and Qk(X) > 0 on I, and :1 Qk Ii = 1. Here 17,

denotes the set of all polynomials of degree 1 or less. Letting ]I{ =
+ d -t- 1. we see that

(2.1 )

for all k and all X E 1. By (2.1), the P k are bounded independently of k over
any set of n + 1 points in I\{x1 '00" x s}. Since 17n is an (n + I)-dimensional
Haar subspace of C(l), the Pk are uniformly bounded over 1. Thus we may
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extract convergent subsequences and relabel so that P k ---+ P E 7rnand
Q,c ---+ Q E7rm uniformly on I as k -+ 00. Note that P(x) ~ 0 and Q(x) ~ 0
on I, II Q II = 1, and

I P(x)'P B(x) I ~ MQ(x)P (2.2)

for all x E 1.
Since II Q II = 1, Q ~. 0 and Q can have at most finitely many zeros in 1.

It remains to show that P/Q is in R+(n, m) or can be reduced to an element
of R+(n, m). To do this, we need only show that every zero of Q in I is also
a zero of P with equal or greater multiplicity. Suppose that x* is a zero
of Q in 1. If x* E [\{xi , ... , x s}, (2.2) implies that

for some M I > 0 and all x in some neighborhood of x*. Thus x* is a zero
of P with multiplicity greater than or equal to its multiplicity as a zero
of Q. Suppose x* = Xv E (a, b). Since Q(x) ~ 0 on I, XV is a zero of Q of
even multiplicity, say 2{-t. By (2.2)

r I P(x) I
P

I. B(x) [ s:: M r I Q(x) IP
x~~ (x - xv)2,,-2 I x - Xv [2P'--" x~~, (x - xy" < 00.

Since limx_,' I B(x)I/1 x - XV 12P = 00, P(X1)/(Xl - xv)2"-2 -+ 0 as 1-+ 00 for
some seque~ce {Xl} which converges to xv' As a result, limx_:t P(x)/
(x - xv)2"~2 = 0, and Xv is a zero of P of multiplicity at least 2{-t - l~ Since
P(x) ~ 0 on I, XV must be a zero of P of even multiplicity. Thus Xv is a zero
of P of multiplicity at least 2{-t. The case in which x* = Xv = a or b is handled
similarly to the case x* = Xv E (a, b) and is omitted.

Thus there exist p* E7rn and Q* E7rm with P*(x) ~ 0 and Q*(x) > 0
on I such that

P(x)
Q(x)

P*(x)
Q*(x)

for all X E I with Q(x) * O. Thus R* = P*/Q* E R+(n, m). If x E [ and
Q(x) =!= 0, then

I/(x) - R*(x)p B(x)! = l~ I/(x) - [~:~~rB(X)! ~ d.

By the continuity of1- (R*)'P B, 1[1 - (R*)P B II ~ d, and (R*)P B is a best
approximation toIfrom V(p, n, m). Thus the proof of Theorem 1 is complete.

We remark that if m = 0, then V(p, n, m) is a closed subset of a finite
dimensional subspace of CCl), and thus I has a best approximation from
V(p, n, m). So conditions (i) and (ii) can be deleted if m = O. If m = 1,
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then in the proof of Theorem 1, the linear polynomial Q could not vanish
in (a, b). Thus if 111 = 1, condition (ii) can be dropped. The next theorem
indicates that conditions (i) and (ii) are essential when n ? 2 and 111 ? 2.

THEOREM 2. Let n ? 2 and 111 ? 2. If B(x) does not satisfy condition (i)
of Theorem 1 at some Xv = a or b or if B(x) does not satisfi' condition (ii) of
Theorem 1 at some Xv EO (a, b), then there is a g EO C(I) with g(x) > 0 on J
such that f = gB does not have a best approximation from V(p, 11, m).

Proof Suppose that for some X" EO (a, b)

(2.3)

The proof in the case that condition (i) is violated at Xn = a or b is similar
to the present case and is omitted. In what follows, we shall interpret
(x - Xn)2Pas [(x - x,.,)2]P. By (2.3) we may write

B(x) = H(x)(x - xn)2'P

where H is continuous on [a, X".") U (xn , b] and I H I is upper semicontinuous
at x,., . In addition, we may assume that I H(x,.,) I > O. For E ? 0, let

R.(x) = K(x - xnF + 1
(x - Xn)2 + E

where K > 0 is sufficiently large that

sup i B(x) Ro(x)P I = max I H(x) I [K(x - X,,)2 + l]P > 3 I H(xn)[·
x~ x~

X=/=Xn

Since R(xv) = 0, v = 1'00" S, there is an open interval (a, (3) contained in I
which is disjoint from {Xl '00" x s} such that I B(x) Ro(x))) i > 2 l H(xn) I for
X EO (ex, p). Let 1 = n + 111 + 2 and select 1 points gl < g2 < ... < g~ in
(ex, p). Then \ B(gJ Ro(gy I > 2 I H(xn)[, i = 1'00" I, and the BCg;) have
the same sign. Now let d be such that I H(xn)I < d < 2 I H(x")l.

We now construct the function g. For i = 1,... , I, let g(g,) be given by

Since i RO(gi)P B(OI > d, g(gi) > 0, i = 1,00.,1. By the upper semicontinuity
of H at x" , there is aD> 0 such that [xn - D, X n + D] C I and

i B(x) Ro(x)P I = I H(x)I [K(x - Xn)2 + 1)1' :(; d
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for 0 < I x - X n ! ~ d. We fix EO > 0 and define

for I x - X n I ~ o. Then g(x) > 0 for I x - Xn I ~ 8. For 0 < I x - Xn I ~ (;
and any 0 < E < EO ,

Ig(x) B(x) - R.(x)P B(x) I = I B(x) I I R.lY)P - R.(X)l' I

~ I B(x) R.(x)P I ~ IB(x) Ro(x)P i ~ d. (2.4)

We finally extend g continuously to all of I so that

g(x) > 0
for x E I and

I g(x) B(x) - Ro(x)P B(x) [ ~ d

(2.5)

(2.6)

for x E I\{xn}. This can be accomplished as follows. Let A = {~1 ,... , ~1 ,

xn - 8, X n + o}, 71 = min,~EAg(x) > 0, 72 = max,~EAg(X), lix) = max{71,
Ro(x)p - d/I B(x)I}, and 12(x) = min{72' Ro(x)P + d/I B(x)[}. Then hand 12
are continuous on I\(xn - 8, Xn + 8) and Il(x) ~ g(x) ~/2(x) for x E A.
By a variant of the Tietze extension theorem, g can be extended continuously
to I\(xn - 8, XT/ + 8) so that hex) ~ g(x) ~/ix) for x E l\(xn - 8, X n + 8).
Thus g is continuous on I and satisfies (2.5) for x E I and (2.6) for x E l\{xn}.

We finally show that I = gB does not have a best approximation from
V(p, 11, 111). By (2.4), (2.6), and the fact that R. ->- Ro uniformly on I\(xn - 8,
X n + 8),

lim III - R.PB [I = d
e........O+

and thus
inf III - RPBII ~ d.

RER+(n,m)

Now assume that I has a best approximation (R*)P B from V(p, n, 111)
where R* E R+(n, m). For i = I, ... , I,

(-l)i[j(~i) - R*(~i)P B(~i)]

~ [II - (R*)P B II ~ d = (-I)i[f(gi) - Ro(g;)P B(g;)].

Thus (-I)i[R(gi)P - RO(gi)P] B(gi) ;?: 0, i = I, ... , I. Hence, a(-1)i[R*(gi)P ­
RO(gi)P] ;?: 0, i = I, ... , I, where a is the common sign of the B(!;i)' Therefore,
~(-I)i[R*(gi) - RO(gi)] ;?: 0, i = I, ... , I. Letting R* = P*/Q* where p* E 7Tn ,

Q* E 7Tm , p* ;?: 0 and Q* > 0 on I, we see that
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"or l' - '1 I Sl'nce D*(X)('x - x )2 + Q*fx)r V(y - v )2 -!- IJ ~ 1" n ~]11 - , ••• , • .1-", .~. v r; ,,-. t!\.·.. ~\n I c 1. n+n~ , \.-. j /

implies that

Evaluation for x = x" yields Q*(x,,) = 0 ',Vllich is a contradiction. Thus f
does not have a best approximation from V(p, Ii, Ill).

We remark that if the zeros of B are only at a or b, thell RE could have
beel>. chosen to be i.n R-'-(1, 1), E > O. In this case, the result of Theorem .2
can be extended to n ;;" 1 and m ;;" 1.

3. CI-fARACTERIZATION AND UNIQUENESS Of BEST ApPROXIMATIONS

In this section, we state two characterization theorems and a uniqueness
theorem for best approximations from v~(p, il, rn). The development of
these theorems is essentially the same as that on page 158-163 in Cheney [11
and, as a result, we omit the proofs.

Let R E R+(n, m) and suppose that g rt R-'-(n, m). Let

)'1 = {x E I: If(x) - R(x)P B(x) I = i f - RPB ,I},

and Y2 = {x E I: R(x) = O}. For x E I, let u(x) = sgn[g(x) - R(x)1']. Note
that if x E Y2 , then u(x) = 1. Let

u = {P - RQ: P E1Tn and Q Err",}.

The first characterization theorem is of the Kolmogorov type and holds
even if the approximants involve generalized rational functions as defined
on p. 158 of [1] rather than rational functions.

THEOREM 3. Suppose g rt R+(n, m). Then RPB is a best approximation to
f = gBfrom V(p, n, m) ifand only if there is no rp E U such that u(x) rp(x) > 0
for all x E.1\ U h .

The second characterizati.on theorem is of the alternation type. In light
of Williams' characterization theorem [5] and the usual characterization
results for restricted range approximation, this result is quite natural.

THEOREM 4. Suppose R = P/Q E R+(n, m) where P/Q is a complete!;
reduced representation for R and let

d = 1 + max{n + deg Q, m + deg P}
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if R =1= 0 and d = 11 + 1 if R - O. Then RPB is a best approximation to f
from V(p, 11, m) if and only if there exist d + 1 poif1ts go < gl < ... < gd
in I such that

(i) [j(g;) - R(fi)P B(g;)I = [If - RPB II or R(g;) = 0, i = 0,... , d, and

(ii) sgn[g(g;) - R(g;)P] = -sgn[g(g;_l) - R(gH)P], i = 1,..., d.

The uniqueness of best approximations now follows directly from
Theorem 4.

TIlEOREM 5. The function f = gB has at most one best approximation
from V(p, n, m).

4. CONCLUSION

The principle results of this paper are that the existence theorem of Taylor
and Williams [4] extends to the case n ~ 0 and that the conditions of this
theorem are minimal when n ~ 2 and m ~ 2. In addition, the results of
Section 3 indicate that Williams' characterization and uniqueness results [5]
also extend to the more general setting of this paper. It would be of interest
to investigate algorithms to find best approximations to f = gB from
V(p, n,m).
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