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1. INTRODUCTION

Let I == [a, b] be a compact interval, C(I) be the set of continuous, real-
valued functions defined on 7, and p > 0. Suppose f(x) = g(x) B(x) where
g, Be C(I), g(x) > 0 on I, and B has finitely many zeros X, , Xs ,..., X in 1.
Let R*(n, m) denote the set of all rational functions R = P/Q where P is a
polynomial of degree » or less, @ is a polynomial of degree m or less,
P(x) =0 on I, and QO(x) >0 on I We shall consider the problem of
approximating f by elements of the set

V(p, n, m) = {R?B: R & R*(n, m)}.

In particular, an element (R*)? B of V(p, n, m) is called a best approximation
to ffrom V(p, n, m) if

If— (RH? Bl = inf ) If — R*B]| (1.1)

ReR™(n,m

where || - || is the uniform norm over 1.

The problem of Chebyshev approximation by interpolating rationals (1.1)
(so called because of the inclusion of the factor B) was first considered by
J. Williams [5] in the case # = 0. That is, his approximants involved recip-
rocals of polynomials. The question of existence of best approximations
proved to be a difficulty in Williams’ paper. A later paper by G. D. Taylor
and J. Williams [4] gave examples for which best approximations do not
exist and established conditions on B and on g which insure the existence
of best approximations. The purpose of this paper is to extend Taylor and
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Williams® Thecrem 3.1 (conditions on B) to the more general setting of
approximation from F(p,n, m) with n > 0. We do this by using quite
different methods. In addition, we show that the conditions of this theorem
are essential whenn > 2 and m > 2.

As C. B. Dunham [3] notes, the approximation problem (1.1 can be
regarded as a restricted range approximation problem of g by rational
functions with respect to a vanishing weight function | 8|. Dunham [2, 3]
has given characterization and uniqueness theorems for simiiar problems.
In Section 3, we state appropriate characterization and uniqueness results
for the problem (1.1).

2. EXISTENCE OF BEST APPROXIMATIONS

In this section, we place conditions on B which insure the existence of
best approximations to f from V(p, n, m). Essentially the conditions are
that the interior zeros of B are of multiplicity less than 2p and the endpoint
zeros of B are of multiplicity less than p. This will be foliowed by showing
that these conditions are essential when n > 2 and m > 2 in the sense that
if B fails to satisfy these conditions, then there is a g € C(J) with g(x) > ¢
on I such that f = gB does not have a best approximation from ¥(p, n, m).

TueoreMm 1. Suppose that for v = 1,..., s,
(1) Tme, | B/ x —x,1? =00 ifx,=aorb, and
(i) Tiros, | B X — %, % = 0 if x,& (@, b).
Then f has a best approximation from V{(p, n, m).

Proof. Let
d= inf ||f— RB|

ReRT(n,m)

and select a sequence {R,}r_; in R*(n, m) such that || f— RPB| <d + |
for all k and [ f — R,PB||— d as k — oc. We may write R, = P/, where
Prem,, O, €7, Plx) =0 and Qix) > 0 on I, and || @, || = L. Here ;
denotes the set of all polynomials of degree 7 or less. Letting A =
At 4~ d -+ 1. we see that

| Pi(x)? B(x)| < MQO(x)”

.
[N
ot

N

for all k and all x e I. By (2.1), the P, are bounded independently of k over
any set of » -+ 1 points in \{x; ,..., x,}. Since 7, is an (# 4+ 1)-dimensional
Haar subspace of C(I), the P, are uniformly bounded over I. Thus we may
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extract convergent subsequences and relabel so that P, Pem, and
Q. — O €, uniformly on I as k — co. Note that P(x) > 0 and Q(x) >0
onZ[Qf=1,and

| P(x)? B(x)| < MQ(x)? 2.2)

forall xe I

Since || @] = 1, @ == 0 and Q can have at most finitely many zeros in I
It remains to show that P/Q is in R*(n, m) or can be reduced to an element
of Rt(n, m). To do this, we need only show that every zero of Q in [ is also
a zero of P with equal or greater multiplicity. Suppose that x* is a zero
of Qin I If x* e I\{x, ...., x,}, (2.2) implies that

< P(x) < MyQ(x)

for some M, > 0 and all x in some neighborhood of x*. Thus x* is a zero
of P with multiplicity greater than or equal to its multiplicity as a zero
of Q. Suppose x* = x, €(a, b). Since Q(x) >0 on I, x, is a zero of Q of
even multiplicity, say 2u. By (2.2)

¥d

o) < 00.

fim Px) 71 B& —< MIm | —=1
(x _ xv)lu

xoNy, (X - xv)zu_g I X — X, IZp XX,

Since fim,_., | B)|/| x — x, [?* = o0, P(x)/(x* — x,)?»~2 — 0 as / — oo for
some sequence {x'} which converges to x,. As a result, lim, ., P(x)/
(x — x,)*2 =0, and x, is a zero of P of multiplicity at least 2u — 1. Since
P(x) = 0 on I, x, must be a zero of P of even multiplicity. Thus x, is a zero
of P of multiplicity at least 2u. The case in which x* = x, = a or b is handled
similarly to the case x* = x, € (g, b) and is omitted.

Thus there exist P*ew, and Q* 7w, with P*(x) >0 and Q*(x) >0
on I such that

Plx)  P*x)
o(x)  0%x)

for all xe/l with Q(x) # 0. Thus R* = P*/Q*c R*(n,m). If xeI and
O(x) = 0, then

A6 — RF()? BEoL = lim | fi9) — |

Plc(’f)
Q()

By the continuity of f — (R*)? B, {| f — (R*)? B|| < d, and (R*)? B is a best
approximation to ffrom V(p, n, m). Thus the proof of Theorem 1 is complete.

We remark that if m = 0, then ¥V(p, n, m) is a closed subset of a finite
dimensional subspace of C(I), and thus f has a best approximation from
V(p, n, m). So conditions (1) and (ii) can be deleted if m =0. If m =1,

Be)| <d
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then in the proof of Theorem I, the linear polynomial @ could not vanish
in (a, p). Thus if m = 1, condition (ii) can be dropped. The next thecrem
indicates that conditions (i) and (ii) are essential when # = 2 and m = 2.

THEGREM 2. Let n = 2 and m = 2. If B(x) does not satisfy condition (i)
of Theorem 1 at some x, = a or b or if B(x) does not satisfy condition (i1) of
Theorem § at some x,€(a, b), then there is a ge C(I) with g(x) >0 on §
such that = gB does not have a best approximation from V(p, n, m).

Proof. Suppose that for some x, € (a, b)

e,
!\.)
(3]

Nowgsr?

i | B/ x — x, (2 < o.
n‘)Xn

The proof in the case that condition (i) is violated at x, = a or b is sinilar
to the present case and is omitted. In what follows, we shall interpret
{x — x,%? as [(x — x,)%]*. By (2.3) we may write

B(x) = H(x)x — x,**

where H is continuous on [g, x,) U (x,, , bl and | H | is upper semicontinuous
at x, . In addition, we may assume that | H(x,)| > 0. For € = 0, let

K(x - xn)z ":_ 1

RO = —xp+e

where K > 0 is sufficiently large that

sup | B(x) Ry(x)* | = max P HC)| [K(x — x,)* + 117 > 3 | H(x,)l.

A#x

Since B(x,) =0, v = 1,..., 5, there is an open interval («, 8) coniained in 7
which is disjoint from {x, ,... xs} such that | B(x) Ry(x)? | > 2! H(x,}| for
xe(w, B). Let I =n+m-+2 and select ! points & <& < < & in
(2, B). Then | B(¢) Ry(£)?P | > 2| H(x,)|, i = 1,...,/, and the B(£,) have
the same sign. Now let d be such that | H(x,))| < d < 2| A{x,)|.

We now construct the function g. For i = 1,..., /, let g(§&;) be given by

g(€) B(§) = Ry(éd)? B(§) + (— 1) d.

Since | Ry(€:)? B(£)| > d, g(¢,) > 0,1 = 1,..., I. By the upper semicontinuity
of H at x,, there is a § > 0 such that [x, — 8, x,, + 6] C T and

L B(X) Ro(x)7 | = | HX)| [K(x — x,)2 + 117 < d
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for 0 << | x — x,] < d. We fix ¢, > 0 and define
g(x) = R (x)”

for|x — x,| <8.Theng(x) >0for|x — x,| <8 For0<|x —ux,| <8
and any 0 << e < ¢,

tg(x) B(x) — R(x)” B(x)] = | B(x})| | Ry(x)* — Rdx)" |
SBX) R()"| < | Bx) Ry(x)" | < d. (24)

We finally extend g continuously to all of  so that

g(x) >0 (2.5)
for xe I and
| g(x) B(x) — Ry(x)? B(x)| < d (2.6)

for xel\{x,]. This can be accomplished as follows. Let 4 ={¢,,..., &,
Xy = 8, X, + 8}, Ty = MiNue 1 g(x) >0, 73 = MaXyey g(X), fi(x) = max{r,,
Ry(x)? — dJ| B(x)|}, and f3(x) = min{r, , Ry(x)* + d| B(x)|}. Then f; and £,
are continuous on I\(x, — &, x, + 8) and fi(x) < g(x) < filx) for x e A.
By a variant of the Tietze extension theorem, g can be extended continuously
to I\(x,, — J, x, + 8) so that fi(x) << g(x) < filx) for x e I\(x, — 3, x,, + 9).
Thus g is continuous on [ and satisfies (2.5) for x € I and (2.6) for x € I\{x,}.
We finally show that /= gB does not have a best approximation from

V(p, n, m). By (2.4), (2.6), and the fact that R, — R, uniformly on I\(x, — &,
X, -+ 0),

lim|f— R*B||=d

07
and thus

inf || f— R*B] < d.

ReR (n,m)

Now assume that f has a best approximation (R*)? B from V(p, n, m)
where R* € RH(n, m). For i = 1,..., [,

(—IY[f(&) — R*(:)? BE)]
<[f— (R¥? B|| < d = (—1)[f(€) — Ry(§)? B(E)].
Thus (—1)[R(£,)? — Ry(€)*1 B(E) = 0,i = 1,..., I. Hence, o(— 1)} [R*(£,)* —
R(£)?]1 =0, i = 1,..., [, where o is the common sign of the B(¢;). Therefore,

o(—1I[R*(&) — Ry(€D)1=0,i = 1,..., I. Letting R* = P*/Q* where P*cm,,
Q*em,, P* >=0and O* > 0 on I, we see that

o(—D[P*ENE — x,)* — Q¥ ENKE — x,)* + 111 =0 (27
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I,
th
sl

fori = 1,..., I Since P*(x)(x — x,)* + Q*(0)K(x — x,)* - 1}eli, .., 27
implies that

PHE(x — 5t — O*(IK(e — x ) + 1] = 0.

Evaluation for x = x, yields 0*(x,) =0 which is a contradiction. Thus f
does not have & best approximation from ¥(p, n, 1m1).

We remark that if the zeros of B are only at g or 5, then R, could have
been chosen to be tn R(1, 1), € > 0. In this case, the result of Theorem 2
can be extended ton > 1 and m > 1.

3, CHARACTERIZATION AND UNIQUENESS OF BEST APPROXIMATIONS

Tn this section, we state two characterization thecrems and a uniqueness
theorem for best approximations from ¥{(p,#, m). The development of
these theorems is essentially the same as that on page 158-163 in Cheney [1]
and, as a result, we omit the proofs.

Let R e Rt{(n, m) and suppose that g ¢ R*(n, m). Let

y={xel|f(x) — Rx)" B(x)| =[f— R"B [},

and y, ={xel: R(x) = 0}. For xeI, let ofx) = sgnfg(y) — R(x}?]. Note
that if x =, then o(x) = 1. Let

U={P—-RO:Perm,and Q=n,.

The first characterization theorem is of the Kolmogorov type and holds
even if the approximants involve generalized rational functions as defined
on p. 158 of [1] rather than rational functions.

THEOREM 3. Suppose g ¢ Rt(n, m). Then R?B is ¢ best approximation to
f = gB from V{(p, n, m) if and only if there is no ¢ € U such that o(x) g(x) > ¢
Jorall xey, Uy,

The second characterization theorem is of the alternation type. In light
of Williams® characterization theorem [5] and the usual characterization
results for restricted range approximation, this result is guite natural,

THeEoREM 4. Suppose R = P|Q € Rt(n, m) where P[Q i3 o completely
reduced representation for R and let

d = 1 + max{n + deg Q, m -+ deg P}
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if R0 and d=mn--1if R=0. Then R*B is a best approximation to f
from V(p, n, m) if and only if there exist d - 1 poirts & < & < - < &,
in I such that

(@) /() — R(E)” BE) =If — R?Bll or R(§) =0,i=0,...,d, and
(i) sgn[g(§) — RE)*] = —sgn[g(€ia) — R(Ein)?) i =1,..., d.

The uniqueness of best approximations now follows directly from
Theorem 4.

THEOREM 5. The function f = gB has at most one best approximation
Jrom V(p, n, m).

4. CONCLUSION

The principle results of this paper are that the existence theorem of Taylor
and Williams [4] extends to the case 1 > 0 and that the conditions of this
theorem are minimal when n > 2 and m > 2. In addition, the results of
Section 3 indicate that Williams® characterization and uniqueness results [5]
also extend to the more general setting of this paper. It would be of interest
to investigate algorithms to find best approximations to f=gB from
V{p, n, m).
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